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Chaos in neural networks with a nonmonotonic transfer function
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Time evolution of diluted neural networks with a nonmonotonic transfer function is analytically described
by flow equations for macroscopic variables. The macroscopic dynamics shows a rich variety of behaviors:
fixed-point, periodicity, and chaos. We examine in detail the structure of the strange attractor and in particular
we study the main features of the stable and unstable manifolds, the hyperbolicity of the attractor, and the
existence of homoclinic intersections. We also discuss the problem of the robustness of the chaos and we prove
that in the present model chaotic behavior is fragileaotic regions are densely intercalated with periodicity
windows, according to a recently discussed conjecture. Finally we perform an analysis of the microscopic
behavior and in particular we examine the occurrence of damage spreading by studying the time evolution of
two almost identical initial configurations. We show that for any choice of the parameters the two initial states
remain microscopically distincfS1063-651X99)14608-7

PACS numbeps): 87.10+e€, 05.20-y, 05.45-a

[. INTRODUCTION attractor neural networks with nonmonotonic transfer func-
tion. In particular, we analyze a network by mean-field equa-
Since the pioneering work by Sompolinskyal.[1], the tions whose macroscopic dynamics can be analytically cal-
occurrence of oscillations and chaos has become a majaulated [19,20. The time evolution of the macroscopic
field of interest in the frame of neural networKs]. Neural — parameters describing the system is determined by a two-
networks with symmetric synaptic connections have been thdimensional map that exhibits chaotic behavior and repre-
object of extensive studies using methods closely related teents in our opinion a nontrivial and interesting example of a
those used in the theoretical description of the spin glassasonlinear dynamical systertfor recent reviews, see, e.g.,
[3], since they admit an energy function. Also asymmetric[21,27)). In the present work the following issues are consid-
synapses have been studied and the presence of chaotic dyred: the structure and hyperbolicity of the strange attractor,
namics was examined, followind], in a number of subse- the Hausdorff dimension, and Lyapunov exponents. These
quent papergsee, e.g.[4—8]). The investigation of chaotic are typical analyses of the nonlinear dynamical behavior that
neural networks is interesting, not only from a theoreticalwe perform in a neural-motivated two-dimensional map in
point of view, but also for practical reasons, as their dynami-order to achieve a better understanding of the dynamics of
cal possibilities are richer and allow for a larger spectrum ofthis class of neural networks. We also analyze the problem of
engineering applicationsee, e.g., Ref9]). It is also worth  the fragility of chaos and we explicitly prove that the present
stressing that the brain is a highly dynamic system. The richmodel behaves in agreement with the conjecturl@8j; i.e.,
temporal structuréoscillations of neural processes has beenthat periodicity windows are constructed around spine loci
studied in[10—13; chaotic behavior has been discovered in(one-dimensional manifolds in the two-dimensional param-
the nervous systerfil4]. Relying on these neurophysiologi- eter space of the model here considerdthis is in our opin-
cal findings, the study of chaos in neural networks may beon an interesting confirmation of this conjecture that sheds
useful in the comprehension of cognitive processes in théight on the geometrical features of the periodicity windows
brain[15]. to be found in the chaotic regions. Finally, we examine the
Asymmetric synapses are not the only route to chaos imicroscopic behavior underlying the mean field description:
neural networks; another possibility is to use a nonmonowe consider two replicas of the system starting from slightly
tonic functional dependence for the activation function, i.e. different initial conditions and we show that these two dif-
the transfer function that gives the state of the neuron as ferent configurations never become identical, independently
function of the postsynaptic potential. In recent papersof their macroscopic behavior. This feature was already ob-
[16,17] it has been shown that such a nonmonotonic transfeserved in diluted networks with a monotonic transfer func-
function may lead to macroscopic chaos in attractor neurafion [19]; here we prove that such behavior is also present in
networks: chaos appears in a class of macroscopic trajectthe case of nonmonotonic neurons. It follows that at the mi-
ries characterized by an overlap of the initial configurationcroscopic level the network dynamics is always considered
that never vanishes. In other words, the network preservesta be chaotic, whereas from a macroscopic, mean field point
memory of the initial configuration, but the macroscopicof view, a rich variety of behaviors can occur: fixed-point,
overlap does not converge to a fixed value and oscillategeriodicity, and chaos. We note that a similar emergence of a
giving rise to a chaotic time series. Also the case of dilutednacroscopic evolution in the presence of microscopic chaos
networks with dynamical, adaptative synapses and nonmondras recently been found in another framework, i.e., chaotic
tonic neurons in presence of a Hebbian learning mechanismoupled map models; and it has been termedtrivial col-
has been studied, and it has been found that the adaptatitective behavioNTCB, see[24], and references thergin
leads to a reduction of dynami¢8]. The paper is organized as follows: in the next section the
In this paper we further analyze the dynamic behavior ofmodel is described and the flow equations for macroscopic
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parameters are reported and analyzed. In Sec. lll we study
the time evolution of the distance between two replicas of
the network. In Sec. IV we present our conclusions. m

0.8
Il. THE MODEL: ANALYSIS OF FLOW EQUATIONS

We consider the model of Rdf18], i.e., a neural network
with N three-state neurongsping s;(t)e{—1,0,1}, i 0.6F
=1,...N. For each neuros;, K input sitesj(i),...,jx(i)
are randomly chosen among thesites, and\NK synaptic
interactionsJ;; are introduced. We assume that the synapses 0.4
are two-state variabley; e {— 1,1}, randomly and indepen-
dently sampled with mead,; they are not assumed to
evolve in time(the case of adapting synapses is studied in

0.2
[18]). A parallel deterministic dynamics is assumed for neu- -
rons, where the local field acting on neurgn(the postsyn- r
aptic potentigl is given by 0 i
P SR R R P
0 0.2 0.4

(=20 35(t). (D
FIG. 1. Bifurcation map ofn versus], in the caseK=10 and
with the sum taken over thi input neurons. We assume a 6=5.
nonmonotonic transfer function, depending on the parameter
6 [25-29: >0, Q>0 and theself-sustained activitphase §) charac-
_ terized bym=0, Q>0. A phase without fixed points, corre-

Si(t+1)=F,hi(t), 2 sponding to cyclic or chaotic attractors and characterized by

m;>0, Q;>0, is also found; we call it th@eriod-doubling

The dynamics of this model is solved by macroscopicPNase D). We remark that the phase corresponding to the

flow equations for the parameters describing the system. Ldfx€d point (m=0,Q=0) is missing in this model. Depend-

us now introduce order parameters for the neurons. The ovel29 N the values of the parameters, we can get one phase or
lap with pattern{¢} to be retrievedwe choose{¢é=1} for anqther; in Fig. 1 the b|furcat|on diagram of versusJo,
simplicity) is measured byn(t)=(s(t)). We stress that the while keepingd=>5 fixed, is showr(for K=10). The S fixed

suppression of the site indéxis possible because all aver- POINtis stable fody<0.5; atdy~0.5 theF fixed point con-
ages are site independent. The neuronic activity is given b{inuously appears and remains stable wiyit 0.69, where a

Q(t)=(s¥(t)). The flow equations fom andQ have been ifurcation to a stable 2-cycle takes place. The bifurcation
obtained in[lé]: mechanism isperiod doubling i.e., an eigenvalue of the

Jacobian matrix at the fixed point leaves the unitary disk
passing through-1. Increasingl,, successive bifurcations
arise; eventually the system enters in the chaotic region at
Jo~0.88. In the chaotic region, windows of periodicity in-
tercalate with chaotic attractors, which is a well-known fea-
) ture of dynamical systems with chaotic behavior. We have
verified that the values al, where the successive bifurca-
tions take place are consistent with Feigenbaum’s universal-
ity law [30]; i.e., the length inl, of the range of stability for
., (4 an orbit of period 2 decreases approximately geometrically
with n, and the ratio of successive range lengths is close to
4.68... for large n. We note that, in the phase, the
two-dimensional mapEgs.(3) and(4)] still possesses thie
_ andS fixed points, but they are unstable.
#(H=Km(t)Jo © Let us now consider the strange attractor and its depen-
and dence onJ,. For example, in Fig. 2 the strange attractor is
shown, for /=5 and K=10, in correspondence witli,
g(t):K(Q(t)—ngz(t)) (6) =0.9, 0.95, and 0.99, respectively; the fixed pdinis rep-
resented by a star. In the ca®g=0.9, the attractor is made
are mean and variance, respectively, of the local field actingf two disconnected components; in the stationary regime
on neurons at time. successive points on the attractor jump from one component
Depending on the value of and J,, three kinds of dy- to the other. AsJy grows (Jo=0.95), the attractor evolves
namic behavior are possible for the network, which lead to anto a more complicated structure, still composed of two dis-
phase diagrani18]. Two fixed-point ordered phases are connected components. We remark that in these two cases
present, theferromagneticphase F) characterized byn  the fixed pointF is not a limit point of the attractor. Afl,

whereF ,(x) =sgn§) when|x|<# and vanishes otherwise.
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FIG. 2. Strange attractor of the m&p) and (4), corresponding
to K=10, #=5, andJ,=0.9 (a), 0.95(b), 0.99(c). The star repre-

sents the fixed poinf.
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FIG. 3. Stable and unstable manifolds of the fixed p&ir(tep-
resented by the stgarfor J;=0.99,K=10, and§=5.

=0.99 the two components of the attractor merge &nd
becomes a limit point of the attractor. Concerning the Haus-
dorff dimension of the attractor, we found it to be close to
0.95 in the three cases described ab@he dimension was
estimated by the method described &1]; see alsd32])).

Let us now discuss the hyperbolicity of the attractor. We
call that in the hyperbolic case many interesting properties
about the structure and dynamics of chaos hekek, e.g.,
[21,22). In Fig. 3 we have shown finite length segments of
the stable manifold of the fixed poirt (for J;=0.99,
=5, K=10); sinceF is on the attractor, we can argue that
the attractor is the closure of the unstable manifolé oiWe
note that the stable and unstable manifolds have homoclinic
intersections. Moreover, Fig. 3 displays near tangencies be-
tween the stable and unstable manifolds; it is reasonable that
some other segment of the stable manifold will be exactly
tangent to the unstable manifold. We conclude, therefore,
that the attractor is not hyperbolisee[21] for a discussion
on the nonhyperbolicity of Henon'’s attrac{@3], which has
similarities to the attractor of the map considered here

We continue our analysis of the dynamical properties of
the neural model and we turn now to the Lyapunov expo-
nents. By evaluating the Jacobian of the map, we find it to be
area contracting; therefore there is one positive Lyapunov
exponent at most. We have evaluated the fiksf) (and the
second k,) Lyapunov exponents by the method of Ref.
[34], and the results are displayed in Figsa)dand 4b); as
expected, the second Lyapunov exponent is always negative.
For a given model, the ratio of the number of free parameters
to the number of positive Lyapunov exponents seems to be
related, according to a conjecture[id3], to the fragility of
chaos: if this ratio is greater or equal 1 a slight change of
the parameters can typically destroy chaos and a stable peri-
odic orbit sets in. Since in our case the ratio i$w& have
two parameters], and 6), we conclude that the macroscopic
chaos of the model should be fragile. In Figa portion of
the parameter space is depicted; here black pixels correspond
to chaotic attractors and white pixels to stable periodic at-
tractors. One can see that extended periodicity windows are
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present; they are apparently dense everywhere. The abowence the conjecture {i23] is confirmed. We note, in pass-
cited conjecture 23] is based on the idea that periodicity ing, that our findings confirm that the behavior of two-
windows are constructed arousgine locj i.e., values of the dimensional area-contracting maps is often similar to that of
parameters that give rise to superstable orbits. For twoene-dimensional maps with critical poirit35].

dimensional maps, the spine locus of cycles with pefadd The concept of robust chaos as associated with an attrac-
determined by the conditions dt=0 and trM =0, where  tor for which the number of positive Lyapunov exponefirts

M is the Jacobian matrix of the-iterated map. Our map has Some region of parameter spacelarger than the number of

no critical points(like, e.g., Henon’s mapbecause the de- free (accessibleparameters in the model has been also dis-
terminant of the Jacobian never vanishes; hence the condussed in[36]; recently it has been pointed out that non-
tion detM =0 cannot be strictly satisfied. However, since themonotonic transfer functions may lead to robust chaos in
map is area contracting, ddt~0 for a periodic orbit with ~ time series generated by feed-forward neural [&T$ Prob-
sufficiently high periodp (see[23]); one can therefore ne- ably fully connected networks with a nonmonotonic activa-
glect the condition deM =0 and the stability requirements tion function might provide robust chaos; however, the ana-
reduce to one condition for stability, which according to thelytic analysis of these models is difficult since the dynamical
discussion above is t =0. It follows that the spines are of theory that describes the fully connected Hopfield model
codimension 1, i.e., one-dimensional manifolds in #3ed [38] has not yet been extended to the case of nonmonotonic
plane. In Fig. 6 we have shown finite length segments of thé&€urons.
spine loci determined by the condition Mr=0 with p

=32, 64, and 24. Since we do not have an analytic treatment

of the two-dimensional map, we have implemented the con-

dition tr M =0 numerically. White areas are periodicity win- A system is said to exhibit damage spreading if the dis-
dows that are apparently constructed around spine loctance between two of its replicas, which evolve from slightly

IIl. DAMAGE SPREADING
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tial t=0 configurations with the same activi€y, and over-

lap my but microscopically different for a small number of
neurons. Subsequently the two replicas evolve, subject to the
same dynamics, since their synaptic connections are identi-
cal. The two replicas will have the same macroscopic param-
etersm(t) andQ(t) at every later time, since the trajecto-
ries m(t) and Q(t) are obtained bym, and Q, iterating
equationg3) and(4). At the microscopic level the situation
may be different, and we therefore study a suitably defined
distance between the two replicas. Let us ddi(t) and
h2(t) the local fields acting os* ands?, two corresponding
neurons of the replicas located on the same lattice site. The
distance between the local fields is defined by

d(t)=([h*(t)—h3(t)])=2[o(t) —A(D)], (7)
where
A(t)=(h*(t)h?(t))—(h(t))(h?(t)) (8)

is the linear correlation between local fields at titnén the
limit N—oe with K large and finiteh® andh? can be treated
as Gaussian variables with probability density:

FIG. 5. A portion of the parameter space, ;) €[5,5.12

X[0.88,0.9. Black pixels correspond to chaotic behavior, whereas 1 1 o

white pixels correspond to periodicity. P,(h,h?)= Cexp{ — Z[UZ_AZ [(h1— )%+ (h?—w)?]
different initial conditions, increases with timeee, e.g., 2A L )

[39]). Even though damage spreading was first introduced in — 2z =mw(h*= )iy, (9)

the context of biologically motivated dynamical systems
[40], it has become an important tool for studying the influ-\yhereC is a normalization factor ana, u, A are implicitly

ence of initial conditions on the time evolution of various gependent on time. The time evolution law forA(t) is
physical systems. Ifi19] this phenomenon was studied in given by

diluted networks with a monotonic transfer function. The

occurrence of damage spreading in the Little-Hopfield neural A(t+1)= K(<Sl(t+ 1)s?(t+ 1)>—J§m2(t+ 1)). (10
networks, both for fully connected and strongly diluted sys-

tems, has been studied[i1]. Here we generalize this study The average of the product of corresponding neurons in the
to the case of diluted networks with nonmonotonic neuronstwo replicas is evaluated as follows:

Let us consider two replicas of the same system having ini-

<sl(t+1)sz(t+1)>=fdhlf dh?P,(h,h?)F ,(hY)F ,(h?);

——— (11)
— e

the evaluation of the integral on the right-hand side of Eq.
(12) is straightforward and leads to the time evolution law
for A(t), which can be written as follows:

A(t+1)—KU(H“)/‘EDzl(z)—f“/\U DzI(2)

— wulo — (0+w)/ o

: (12

—J5mA(t+1)

whereDz=e~ (127 (dz/\[277) is the Gaussian measure and

FIG. 6. A portion of parameter spaceg,{,)e[5,5.015 1
%[0.88,0.8825. White areas correspond to periodic behavior. The I(z)=erf(A)+ E[erf(B)—erf(C)], (13
solid line represents the spine locus witk 24, the dashed line is
the spine locus witlp=64, and the dotted line is the spine with with
p=32. These curves are obtained numerically by interpolation of a
finite set of points characterized by the conditiorMt=0. Gray \/* A
. - R . N z
areas correspond to chaotic behavior; they contain infinite period- A= +
icity windows not displayed here. Jo2—AZ  Jo?—A?




PRE 60 CHAOS IN NEURAL NETWORKS WITH A . .. 2191
8f H] HINL H] ] H| M T 0 i
6
: n n n n n n n n| n n :
B A4
| M M M u u t M M M i
2 M M M M M M M u M M
FIG. 7. Stationary regime of the distance be-

tween two configurations having initial distance
d(0)=10"5. Squares correspond to the distance,
y=d(t), while triangles represent the overlap,

RO T T T T =m(t). The parameter values afe) K=10, 6
i i =5, andJ,=0.85; and(b) K=10, §=5, andJ,
I o i =0.95.
15— -
L . 4
>~ 10— -
mo
Qa _
n
5 WY
g u U
L ho
. A L1 A A
0L e .
0 40

(b)

(0—,u)\/; Az the figures[the overlap trajectoryn(t)]; it is a cycle with
B= T~ 5" (15  period 4 in casda) and is chaotic in casé). Correspond-
Jor=A Joi—A ingly, the distancel(t) is always greater than zefoe., dam-
age spreading occyrand has period 4 in cage), whereas it
Cc— (‘9+M)\/; Az (16) shows chaotic behavior in cage).
Jo?—AZ  \[g?— A7 We remark that in Ref[18] it has been shown that the

Equation(12), together with Eqs(3) and (4), solves the
time evolution of A(t). We remark thatA(t)=o(t) [i.e.,
d(t)=0] is a fixed point for Eq(12). The possible occur-

presence of adapting synapses in these networks leads to
reduction of macroscopic dynamics. The adapting system
self-regulates its synaptic configuration, by its own dynam-
ics, so as to escape from chaotic regions: in the stationary

rence of damage spreading can be now seen to be equivalargime, the mean of synapsé&) remains practically con-

to the instability of the fixed poinA=c¢. We have studied stant (equal to the stationary valud,) and the system
this problem numerically. We find that damage spreadingsettles into periodic macroscopic orbits. Since we found
occurs for any choice of the parametdgs 6, K. It follows  damage spreading for all fixed values %y, it follows that

that, from a microscopic point of view, the motion of the the adapting system also displays damage spreading in the
system is always to be considered chaotic, even though at ttetationary regime. In other words, the adaptiveness of syn-
macroscopic level it can exhibit different behavidfixed-  apses should not remove damage spreading, although it re-
point, periodicity, chads In Fig. 7 we depict the stationary duces the macroscopic dynamics. However, damage spread-
regime ofd(t) in the case of periodic macroscopic dynamicsing may be suppressed if the neuron updating rule becomes
and chaotic dynamics; the initial distance wa(®)=10"°. stochastic by a proper amount of noiske two replicas be-
The macroscopic behavior can be seen in the lower part ahg subject to the same noise; 46¢39,41).
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V. CONCLUSIONS same synaptic configuration. We have found that the two

In this paper we have studied a diluted neural networkrephcas never become identical, and the system exhibits

with a nonmonotonic activation function, whose macro—damage spreading for any choice of parameters. In the sta-

. S . . tionary regime the distance between the two replicas does
scopic dynamics is given by a two-dimensional map. Some

properties of this nonlinear map have been studied: the stru ot vanish and the trajectory(t) behaves in agreement with

ture and nonhyperbolicity of the strange attractor. In |oarticu(-%he macroscopic dynamics: it is periodichaotig if m(t) is

lar, we have analyzed the fragility of the chaos and we havge”Od'C(ChaOt'O'
shown the validity of a recently discussed conjecture; i.e.,

periodicity windows are constructed around spine loci. Fi-

nally we have studied the time evolution of the distance be- The authors gratefully thank L. Angelini, G. Gonnella, M.
tween two replicas of the model that evolve subject to thePellicoro, and M. Villani for useful discussions.
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