
taly

PHYSICAL REVIEW E AUGUST 1999VOLUME 60, NUMBER 2
Chaos in neural networks with a nonmonotonic transfer function

D. Caroppo, M. Mannarelli, G. Nardulli, and S. Stramaglia
Dipartimento Interateneo di Fisica and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari, I

~Received 23 March 1999!

Time evolution of diluted neural networks with a nonmonotonic transfer function is analytically described
by flow equations for macroscopic variables. The macroscopic dynamics shows a rich variety of behaviors:
fixed-point, periodicity, and chaos. We examine in detail the structure of the strange attractor and in particular
we study the main features of the stable and unstable manifolds, the hyperbolicity of the attractor, and the
existence of homoclinic intersections. We also discuss the problem of the robustness of the chaos and we prove
that in the present model chaotic behavior is fragile~chaotic regions are densely intercalated with periodicity
windows!, according to a recently discussed conjecture. Finally we perform an analysis of the microscopic
behavior and in particular we examine the occurrence of damage spreading by studying the time evolution of
two almost identical initial configurations. We show that for any choice of the parameters the two initial states
remain microscopically distinct.@S1063-651X~99!14608-7#

PACS number~s!: 87.10.1e, 05.20.2y, 05.45.2a
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I. INTRODUCTION

Since the pioneering work by Sompolinskyet al. @1#, the
occurrence of oscillations and chaos has become a m
field of interest in the frame of neural networks@2#. Neural
networks with symmetric synaptic connections have been
object of extensive studies using methods closely relate
those used in the theoretical description of the spin glas
@3#, since they admit an energy function. Also asymme
synapses have been studied and the presence of chaot
namics was examined, following@1#, in a number of subse
quent papers~see, e.g.,@4–8#!. The investigation of chaotic
neural networks is interesting, not only from a theoreti
point of view, but also for practical reasons, as their dyna
cal possibilities are richer and allow for a larger spectrum
engineering applications~see, e.g., Ref.@9#!. It is also worth
stressing that the brain is a highly dynamic system. The
temporal structure~oscillations! of neural processes has be
studied in@10–13#; chaotic behavior has been discovered
the nervous system@14#. Relying on these neurophysiolog
cal findings, the study of chaos in neural networks may
useful in the comprehension of cognitive processes in
brain @15#.

Asymmetric synapses are not the only route to chao
neural networks; another possibility is to use a nonmo
tonic functional dependence for the activation function, i
the transfer function that gives the state of the neuron a
function of the postsynaptic potential. In recent pap
@16,17# it has been shown that such a nonmonotonic tran
function may lead to macroscopic chaos in attractor ne
networks: chaos appears in a class of macroscopic traje
ries characterized by an overlap of the initial configurat
that never vanishes. In other words, the network preserv
memory of the initial configuration, but the macroscop
overlap does not converge to a fixed value and oscilla
giving rise to a chaotic time series. Also the case of dilu
networks with dynamical, adaptative synapses and nonmo
tonic neurons in presence of a Hebbian learning mechan
has been studied, and it has been found that the adapt
leads to a reduction of dynamics@18#.

In this paper we further analyze the dynamic behavior
PRE 601063-651X/99/60~2!/2186~7!/$15.00
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attractor neural networks with nonmonotonic transfer fun
tion. In particular, we analyze a network by mean-field eq
tions whose macroscopic dynamics can be analytically
culated @19,20#. The time evolution of the macroscopi
parameters describing the system is determined by a t
dimensional map that exhibits chaotic behavior and rep
sents in our opinion a nontrivial and interesting example o
nonlinear dynamical system~for recent reviews, see, e.g
@21,22#!. In the present work the following issues are cons
ered: the structure and hyperbolicity of the strange attrac
the Hausdorff dimension, and Lyapunov exponents. Th
are typical analyses of the nonlinear dynamical behavior
we perform in a neural-motivated two-dimensional map
order to achieve a better understanding of the dynamic
this class of neural networks. We also analyze the problem
the fragility of chaos and we explicitly prove that the prese
model behaves in agreement with the conjecture in@23#; i.e.,
that periodicity windows are constructed around spine l
~one-dimensional manifolds in the two-dimensional para
eter space of the model here considered!. This is in our opin-
ion an interesting confirmation of this conjecture that she
light on the geometrical features of the periodicity window
to be found in the chaotic regions. Finally, we examine
microscopic behavior underlying the mean field descripti
we consider two replicas of the system starting from sligh
different initial conditions and we show that these two d
ferent configurations never become identical, independe
of their macroscopic behavior. This feature was already
served in diluted networks with a monotonic transfer fun
tion @19#; here we prove that such behavior is also presen
the case of nonmonotonic neurons. It follows that at the
croscopic level the network dynamics is always conside
to be chaotic, whereas from a macroscopic, mean field p
of view, a rich variety of behaviors can occur: fixed-poin
periodicity, and chaos. We note that a similar emergence
macroscopic evolution in the presence of microscopic ch
has recently been found in another framework, i.e., cha
coupled map models; and it has been termednontrivial col-
lective behavior~NTCB, see@24#, and references therein!.

The paper is organized as follows: in the next section
model is described and the flow equations for macrosco
2186 © 1999 The American Physical Society
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parameters are reported and analyzed. In Sec. III we s
the time evolution of the distance between two replicas
the network. In Sec. IV we present our conclusions.

II. THE MODEL: ANALYSIS OF FLOW EQUATIONS

We consider the model of Ref.@18#, i.e., a neural network
with N three-state neurons~spins! si(t)P$21,0,1%, i
51,...,N. For each neuronsi , K input sitesj 1( i ),...,j K( i )
are randomly chosen among theN sites, andNK synaptic
interactionsJi j are introduced. We assume that the synap
are two-state variablesJi j P$21,1%, randomly and indepen
dently sampled with meanJ0 ; they are not assumed t
evolve in time~the case of adapting synapses is studied
@18#!. A parallel deterministic dynamics is assumed for ne
rons, where the local field acting on neuronsi ~the postsyn-
aptic potential! is given by

hi~ t !5(
j

Ji j sj~ t !, ~1!

with the sum taken over theK input neurons. We assume
nonmonotonic transfer function, depending on the param
u @25–29#:

si~ t11!5Fu„hi~ t !…, ~2!

whereFu(x)5sgn(x) when uxu,u and vanishes otherwise.
The dynamics of this model is solved by macrosco

flow equations for the parameters describing the system.
us now introduce order parameters for the neurons. The o
lap with pattern$j% to be retrieved~we choose$j51% for
simplicity! is measured bym(t)5^s(t)&. We stress that the
suppression of the site indexi is possible because all ave
ages are site independent. The neuronic activity is given
Q(t)5^s2(t)&. The flow equations form and Q have been
obtained in@18#:

m~ t11!5erfS m~ t !

As~ t !
D 2

1

2 FerfS u1m~ t !

As~ t !
D

2erfS u2m~ t !

As~ t !
D G , ~3!

Q~ t11!5
1

2 FerfS u1m~ t !

As~ t !
D 1erfS u2m~ t !

As~ t !
D G , ~4!

where

m~ t !5Km~ t !J0 ~5!

and

s~ t !5K„Q~ t !2J0
2m2~ t !… ~6!

are mean and variance, respectively, of the local field ac
on neurons at timet.

Depending on the value ofu and J0 , three kinds of dy-
namic behavior are possible for the network, which lead t
phase diagram@18#. Two fixed-point ordered phases a
present, theferromagneticphase (F ) characterized bym
dy
f

s

n
-

er

c
et
r-

y

g

a

.0, Q.0 and theself-sustained activityphase (S) charac-
terized bym50, Q.0. A phase without fixed points, corre
sponding to cyclic or chaotic attractors and characterized
mt.0, Qt.0, is also found; we call it theperiod-doubling
phase (D). We remark that the phase corresponding to
fixed point (m50,Q50) is missing in this model. Depend
ing on the values of the parameters, we can get one phas
another; in Fig. 1 the bifurcation diagram ofm versusJ0 ,
while keepingu55 fixed, is shown~for K510!. TheS fixed
point is stable forJ0,0.5; atJ0;0.5 theF fixed point con-
tinuously appears and remains stable untilJ0;0.69, where a
bifurcation to a stable 2-cycle takes place. The bifurcat
mechanism isperiod doubling; i.e., an eigenvalue of the
Jacobian matrix at the fixed point leaves the unitary d
passing through21. IncreasingJ0 , successive bifurcations
arise; eventually the system enters in the chaotic region
J0;0.88. In the chaotic region, windows of periodicity in
tercalate with chaotic attractors, which is a well-known fe
ture of dynamical systems with chaotic behavior. We ha
verified that the values ofJ0 where the successive bifurca
tions take place are consistent with Feigenbaum’s univer
ity law @30#; i.e., the length inJ0 of the range of stability for
an orbit of period 2n decreases approximately geometrica
with n, and the ratio of successive range lengths is close
4.669 . . . for large n. We note that, in the phaseD, the
two-dimensional map@Eqs.~3! and~4!# still possesses theF
andS fixed points, but they are unstable.

Let us now consider the strange attractor and its dep
dence onJ0 . For example, in Fig. 2 the strange attractor
shown, for u55 and K510, in correspondence withJ0
50.9, 0.95, and 0.99, respectively; the fixed pointF is rep-
resented by a star. In the caseJ050.9, the attractor is made
of two disconnected components; in the stationary reg
successive points on the attractor jump from one compon
to the other. AsJ0 grows (J050.95), the attractor evolve
into a more complicated structure, still composed of two d
connected components. We remark that in these two c
the fixed pointF is not a limit point of the attractor. AtJ0

FIG. 1. Bifurcation map ofm versusJ0 in the caseK510 and
u55.
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FIG. 2. Strange attractor of the map~3! and ~4!, corresponding
to K510, u55, andJ050.9 ~a!, 0.95~b!, 0.99~c!. The star repre-
sents the fixed pointF.
50.99 the two components of the attractor merge andF
becomes a limit point of the attractor. Concerning the Ha
dorff dimension of the attractor, we found it to be close
0.95 in the three cases described above~the dimension was
estimated by the method described in@31#; see also@32#!.

Let us now discuss the hyperbolicity of the attractor. W
call that in the hyperbolic case many interesting proper
about the structure and dynamics of chaos hold~see, e.g.,
@21,22#!. In Fig. 3 we have shown finite length segments
the stable manifold of the fixed pointF ~for J050.99, u
55, K510!; sinceF is on the attractor, we can argue th
the attractor is the closure of the unstable manifold ofF. We
note that the stable and unstable manifolds have homoc
intersections. Moreover, Fig. 3 displays near tangencies
tween the stable and unstable manifolds; it is reasonable
some other segment of the stable manifold will be exac
tangent to the unstable manifold. We conclude, therefo
that the attractor is not hyperbolic~see@21# for a discussion
on the nonhyperbolicity of Henon’s attractor@33#, which has
similarities to the attractor of the map considered here!.

We continue our analysis of the dynamical properties
the neural model and we turn now to the Lyapunov exp
nents. By evaluating the Jacobian of the map, we find it to
area contracting; therefore there is one positive Lyapu
exponent at most. We have evaluated the first (l1) and the
second (l2) Lyapunov exponents by the method of Re
@34#, and the results are displayed in Figs. 4~a! and 4~b!; as
expected, the second Lyapunov exponent is always nega
For a given model, the ratio of the number of free parame
to the number of positive Lyapunov exponents seems to
related, according to a conjecture in@23#, to the fragility of
chaos: if this ratio is greater or equal to 1 a slight change of
the parameters can typically destroy chaos and a stable
odic orbit sets in. Since in our case the ratio is 2~we have
two parameters,J0 andu!, we conclude that the macroscop
chaos of the model should be fragile. In Fig. 5 a portion of
the parameter space is depicted; here black pixels corres
to chaotic attractors and white pixels to stable periodic
tractors. One can see that extended periodicity windows

FIG. 3. Stable and unstable manifolds of the fixed pointF ~rep-
resented by the star!, for J050.99,K510, andu55.
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FIG. 4. ~a! First and~b! second Lyapunov ex-
ponents versusu, corresponding toK510 and
J050.9.
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present; they are apparently dense everywhere. The a
cited conjecture in@23# is based on the idea that periodici
windows are constructed aroundspine loci, i.e., values of the
parameters that give rise to superstable orbits. For t
dimensional maps, the spine locus of cycles with periodp is
determined by the conditions detM50 and trM50, where
M is the Jacobian matrix of thep-iterated map. Our map ha
no critical points~like, e.g., Henon’s map! because the de
terminant of the Jacobian never vanishes; hence the co
tion detM50 cannot be strictly satisfied. However, since t
map is area contracting, detM;0 for a periodic orbit with
sufficiently high periodp ~see@23#!; one can therefore ne
glect the condition detM50 and the stability requirement
reduce to one condition for stability, which according to t
discussion above is trM50. It follows that the spines are o
codimension 1, i.e., one-dimensional manifolds in theJ0-u
plane. In Fig. 6 we have shown finite length segments of
spine loci determined by the condition trM50 with p
532, 64, and 24. Since we do not have an analytic treatm
of the two-dimensional map, we have implemented the c
dition tr M50 numerically. White areas are periodicity win
dows that are apparently constructed around spine l
ve

o-

di-

e

nt
-

i;

hence the conjecture in@23# is confirmed. We note, in pass
ing, that our findings confirm that the behavior of tw
dimensional area-contracting maps is often similar to tha
one-dimensional maps with critical points@35#.

The concept of robust chaos as associated with an at
tor for which the number of positive Lyapunov exponents~in
some region of parameter space! is larger than the number o
free ~accessible! parameters in the model has been also d
cussed in@36#; recently it has been pointed out that no
monotonic transfer functions may lead to robust chaos
time series generated by feed-forward neural nets@37#. Prob-
ably fully connected networks with a nonmonotonic activ
tion function might provide robust chaos; however, the a
lytic analysis of these models is difficult since the dynami
theory that describes the fully connected Hopfield mo
@38# has not yet been extended to the case of nonmonot
neurons.

III. DAMAGE SPREADING

A system is said to exhibit damage spreading if the d
tance between two of its replicas, which evolve from sligh
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different initial conditions, increases with time~see, e.g.,
@39#!. Even though damage spreading was first introduce
the context of biologically motivated dynamical system
@40#, it has become an important tool for studying the infl
ence of initial conditions on the time evolution of variou
physical systems. In@19# this phenomenon was studied
diluted networks with a monotonic transfer function. T
occurrence of damage spreading in the Little-Hopfield neu
networks, both for fully connected and strongly diluted sy
tems, has been studied in@41#. Here we generalize this stud
to the case of diluted networks with nonmonotonic neuro
Let us consider two replicas of the same system having

FIG. 5. A portion of the parameter space, (u,J0)P@5,5.12#
3@0.88,0.9#. Black pixels correspond to chaotic behavior, where
white pixels correspond to periodicity.

FIG. 6. A portion of parameter space, (u,J0)P@5,5.015#
3@0.88,0.8825#. White areas correspond to periodic behavior. T
solid line represents the spine locus withp524, the dashed line is
the spine locus withp564, and the dotted line is the spine wit
p532. These curves are obtained numerically by interpolation
finite set of points characterized by the condition trM50. Gray
areas correspond to chaotic behavior; they contain infinite per
icity windows not displayed here.
in

-

al
-

s.
i-

tial t50 configurations with the same activityQ0 and over-
lap m0 but microscopically different for a small number o
neurons. Subsequently the two replicas evolve, subject to
same dynamics, since their synaptic connections are ide
cal. The two replicas will have the same macroscopic para
etersm(t) andQ(t) at every later timet, since the trajecto-
ries m(t) and Q(t) are obtained bym0 and Q0 iterating
equations~3! and ~4!. At the microscopic level the situation
may be different, and we therefore study a suitably defin
distance between the two replicas. Let us callh1(t) and
h2(t) the local fields acting ons1 ands2, two corresponding
neurons of the replicas located on the same lattice site.
distance between the local fields is defined by

d~ t !5^@h1~ t !2h2~ t !#2&52@s~ t !2D~ t !#, ~7!

where

D~ t !5^h1~ t !h2~ t !&2^h1~ t !&^h2~ t !& ~8!

is the linear correlation between local fields at timet. In the
limit N˜` with K large and finite,h1 andh2 can be treated
as Gaussian variables with probability density:

Pt~h1,h2!5
1

C
expH 2

1

2 F s

s22D2 @~h12m!21~h22m!2#

2
2D

s22D2 ~h12m!~h22m!G J , ~9!

whereC is a normalization factor ands, m, D are implicitly
dependent on timet. The time evolution law forD(t) is
given by

D~ t11!5K„^s1~ t11!s2~ t11!&2J0
2m2~ t11!…. ~10!

The average of the product of corresponding neurons in
two replicas is evaluated as follows:

^s1~ t11!s2~ t11!&5E dh1E dh2Pt~h1,h2!Fu~h1!Fu~h2!;

~11!

the evaluation of the integral on the right-hand side of E
~11! is straightforward and leads to the time evolution la
for D(t), which can be written as follows:

D~ t11!5KS E
2 m/As

~u2m!/As
DzI~z!2E

2 ~u1m!/As

2 m/As
DzI~z!

2J0
2m2~ t11! D , ~12!

whereDz5e2 (1/2) z2
(dz/A2p) is the Gaussian measure an

I ~z!5erf~A!1
1

2
@erf~B!2erf~C!#, ~13!

with

A5
mAs

As22D2
1

Dz

As22D2
, ~14!

s

a

d-
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FIG. 7. Stationary regime of the distance b
tween two configurations having initial distanc
d(0)51025. Squares correspond to the distanc
y5d(t), while triangles represent the overlap,y
5m(t). The parameter values are~a! K510, u
55, andJ050.85; and~b! K510, u55, andJ0

50.95.
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B5
~u2m!As

As22D2
2

Dz

As22D2
, ~15!

C5
~u1m!As

As22D2
1

Dz

As22D2
. ~16!

Equation~12!, together with Eqs.~3! and ~4!, solves the
time evolution ofD(t). We remark thatD(t)5s(t) @i.e.,
d(t)50# is a fixed point for Eq.~12!. The possible occur-
rence of damage spreading can be now seen to be equiv
to the instability of the fixed pointD5s. We have studied
this problem numerically. We find that damage spread
occurs for any choice of the parametersJ0 , u, K. It follows
that, from a microscopic point of view, the motion of th
system is always to be considered chaotic, even though a
macroscopic level it can exhibit different behaviors~fixed-
point, periodicity, chaos!. In Fig. 7 we depict the stationar
regime ofd(t) in the case of periodic macroscopic dynam
and chaotic dynamics; the initial distance wasd(0)51025.
The macroscopic behavior can be seen in the lower par
ent

g

he

of

the figures@the overlap trajectorym(t)#; it is a cycle with
period 4 in case~a! and is chaotic in case~b!. Correspond-
ingly, the distanced(t) is always greater than zero~i.e., dam-
age spreading occurs! and has period 4 in case~a!, whereas it
shows chaotic behavior in case~b!.

We remark that in Ref.@18# it has been shown that th
presence of adapting synapses in these networks lead
reduction of macroscopic dynamics. The adapting sys
self-regulates its synaptic configuration, by its own dyna
ics, so as to escape from chaotic regions: in the station
regime, the mean of synapsesJ(t) remains practically con-
stant ~equal to the stationary valueJstat) and the system
settles into periodic macroscopic orbits. Since we fou
damage spreading for all fixed values ofJ0 , it follows that
the adapting system also displays damage spreading in
stationary regime. In other words, the adaptiveness of s
apses should not remove damage spreading, although i
duces the macroscopic dynamics. However, damage spr
ing may be suppressed if the neuron updating rule beco
stochastic by a proper amount of noise~the two replicas be-
ing subject to the same noise; see@7,39,41#!.
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IV. CONCLUSIONS

In this paper we have studied a diluted neural netw
with a nonmonotonic activation function, whose macr
scopic dynamics is given by a two-dimensional map. So
properties of this nonlinear map have been studied: the st
ture and nonhyperbolicity of the strange attractor. In parti
lar, we have analyzed the fragility of the chaos and we h
shown the validity of a recently discussed conjecture; i
periodicity windows are constructed around spine loci.
nally we have studied the time evolution of the distance
tween two replicas of the model that evolve subject to
ev

n
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same synaptic configuration. We have found that the t
replicas never become identical, and the system exhi
damage spreading for any choice of parameters. In the
tionary regime the distance between the two replicas d
not vanish and the trajectoryd(t) behaves in agreement wit
the macroscopic dynamics: it is periodic~chaotic! if m(t) is
periodic ~chaotic!.
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